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Abstract – A control framework for a robotic vocal tract is

introduced. I incorporate a timing orchestration mechanism into

a basic ART network and the network is situated within a speech

perception-production loop. The network is first trained to auto-

associate its motor output with its resulting sound input during a

‘babble learning’ phase. Further training involves alternating

between babble learning and learning for a set of pre-synthesized

rhythmic vowel patterns. Preliminary analysis indicates that the

network is successful at distinguishing and reproducing the

training patterns with their correct temporal structures.

Index Terms – adaptive resonance theory, ART, speech

processing, robot dynamics, cerebellar model arithmetic

computers.

I.  INTRODUCTION

Adaptive Resonance Theory (ART), first introduced by

Steven Grossberg in the mid 1970s [1-3], provides a strategic

platform from which to model the learning and recognition

and production of temporal patterns. The theory provides a

biologically plausible account of the general workings of the

brain and as a result, it has enjoyed a longevity in relevance.

In keeping with its biological underpinnings of ART, I

introduce a mechanism for orchestrating the combinatorics of

neural firing patterns across time. Such a mechanism is needed

in addressing how the events of temporal patterns like speech

and music are to be integrated in the working memory or

resonance of an ART network.

I situate the network in a speech perception-production

loop. The architecture reflects how language acquisition may

be interpreted as a problem posed to the field of robotics.

Here, speech is considered as coordinated sequences of vocal

articulator motor movements where symbolic notation systems

are never needed or assumed. Raw sound is input from the

environment and articulator commands are issued to the

environment. Like musical riffs played on a saxophone or

guitar, speech involves learned patterns of motor coordination

with feedback. Taken as a whole, this paper introduces a

modeling approach that embraces the popular anti-symbolic

view of modern robotics as applied to speech.

I begin with a brief synopsis of adaptive resonance. ART

is based on collections of cells, called processing units.

Processing units are grouped into fields. How units interact

with each other within a field and across fields is the basis for

the emergent behavior of the system. Fig. 1 depicts a simple

ART network where circles represent processing units and

rectangles around them represent fields, labeled F1 and F2. An

orienting subsystem is also depicted.

Though processing is conceptualized to happen

continuously, the network is updated in discrete time steps or

at each tick of a clock. During an update, input to F1 from the

outside world mixes with top-down input from F2 so that new

activations for processing units in F1 are determined. Input to

a processing unit in F2 for that same time step is calculated in

the standard connectionist way: as a function of the vector of

F1 activations multiplied and summed through sets of weights

corresponding to F2 units. Separate sets of weights fully

connect units in F2 back to units in F1. The sets of weights

between fields are referred to as adaptive filters and are

indicated with arrows between the two fields of Fig 1.

Weights of the adaptive filters are adjusted through a form of

Hebbian learning. A pattern of activation in one field becomes

associated with a corresponding pattern of activation in the

other field. Input to a field from the other field (and from the

outside world in the case of F1) is one of the two main forces

that determines a field’s pattern of activation. The second

force has to do with how units within a field interact.

Units of a field compete with each other for activation

through on-center, off-surround connectivity. An active unit

will inhibit its neighbors in the field such that a unit that

begins with a slightly higher activation will achieve ‘winner-

take-all’ status by successfully suppressing all of its neighbors

and thus reducing the amount of inhibition it receives. Before

training, weights are initialized with random values. Some

pattern of activation in F1 in this condition will provide input

to all processing units in F2 where out of blind luck some of

the F2 processing units will receive slightly higher input

values than others. In this way, a few units will become very

active while the rest are suppressed to become inactive.

Winner-take-all interaction between units in F2 then ‘contrast

enhances’ the activations that resulted from input from F1.
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Because of the nature of the Hebbian algorithms used,

learning between fields is essentially only enacted on weights

when receiving units are active; adaptation only occurs for

weights projecting to units that have won the competition for

activation. In this way only a relatively small number of

weights between fields are updated in associating activation

patterns between fields. Furthermore, learned patterns of

activation become attractors in the sense that a random

pattern of activation will drift into a familiar pattern of

activation within a field. With training, a pattern of activation

of F1 processing units gives rise to an associated pattern of

contrast-enhanced activation of F2 units, which will in turn

influence how F1 responds to input at the next time step. This

‘resonance’ that emerges between F1 and F2 guides the

processing of input as it arrives from the outside world.

Resonance between fields is the short-term or working

memory of the system and is argued by Grossberg and others

to be the basic mechanism of consciousness.

If resonance translates to consciousness, the orienting

system translates to attention. The job of the orienting system

is to detect a gross mismatch between F1 and F2. If the pattern

of activation in F2 no longer corresponds to input from the

outside world, F1 will be receiving divergent messages from

its two input sources. In this case, the orienting system kicks

in to wipe out activations in F2. This gives suppressed units in

F2 the chance to become active in response to the new

activation patterns arriving from F1.

For a much more complete overview of ART, the reader

is directed to [3]. For an introduction to ART for temporal

pattern processing, I recommend Robert Gjerdingen’s ART

por l’Art model [4-5]. His implementation learns to develop

expectations for Mozart Melodies.

II.  ARESA

To think about ART in terms of brain anatomy, consider

F1 to map to the thalamus and brainstem while F2 maps to

cerebral cortex. The orienting system then is taken as the

hippocampal formation and basal forebrain. Though this may

be a simplistic description, it helps in talking about ART in

anatomical terms. I next place the entire system into a

perception-production feedback loop for speech and I describe

a timing mechanism I have developed that maps to the

cerebellum in this anatomical framework.

The model described in the last section is the foundation

for ARESA (Adaptive Resonance Embodied for Speech

Acquisition). Fig. 2 depicts ARESA as the same basic ART

network of Fig. 1 with the innovations. F1 is now fully

connected through a set of weights to a set of output or

synthesis parameter units. The pattern of activation in F1 thus

informs the controllers of a robotic vocal tract
1
. These

parameters correspond to: 1) air pressure 2) vocal cord tension

3) tongue front/back 4) tongue high/low and 5) jaw position.

The front/back high/low tongue positions are determined by

                                                  
1
 Please find video clips and a description of the mechanics of the robotic

tract and latest model developments: http://www.fluidbase.com/ARESA

two motors that move a silicon tongue up and down and/or

forward and back to change the effective shape of a tube. A

third motor controls the height of the jaw and the height of the

jaw in turn influences tongue position within the tube. An

electric speaker mounted on the bottom of the tube simulates

vocalization by making a buzzing sound within a frequency

range. The frequency of the buzzing more or less corresponds

to vocal cord tension and amplitude of the buzz more or less

corresponds to air pressure. Interaction between air pressure

and vocal cord tension also influences the spectral qualities of

the buzzing sound. Sound output from the synthesizer is fed

through a bank of bandpass filters to supply input back to F1.

The input channel mechanism can be thought of in terms of a

cochlear implant. Modern cochlear implants typically have

from 6 to 16 input channels and people with cochlear implants

can generally distinguish the sounds considered in this paper.

The tract with filter bank forms a perception-production

feedback loop where patterns of activation in F1 relate to both

input and output. Though the model is illustrated and

motivated to drive a robotic vocal tract, the robotic tract

currently serves mainly as a poster child for the project. The

work reported in this paper is based on simulations using a

Klatt digital speech synthesizer with roughly the same control

parameters.

Training starts by simply having the system babble. All

weights and unit activations and synthesis parameters of the

system start out with random values. With the synthesis

parameters randomized, the synthesizer then generates a sound

based on random articulator positions. The sound is band-pass

filtered into six channels (each channel the output of a third

order Chebyshev type II filter). Values from the channels at

that time step are used as sending-unit activations to input F1.

Sending units are fully connected through a set of weights to

the units of F1. A form of Hebbian learning is used to

associate the input pattern with the still random pattern of F1

unit activations. This learning follows (1) where the change in

weight between two units, 

! 

"wij , is found as a product of the

learning rate, 

! 

", the activation of the sending unit, 

! 

a
i
, and the

Fig. 2 ARESA

F2

F1

synthesis parameters

sound capture

input channels

oscillator
   bank

articulatory
speech
synthesizer

…

…

orienting
system

reset signal



3

difference between the activation of the sending unit and the

connection weight, 

! 

(oi " wij ) :

     

! 

"wij = #a j (oi $ wij ) (1)

Channel values or activations are then passed through

these updated weights to provide input to F1 with (2).

Activation, 

! 

a , of a receiving unit, 

! 

j , is calculated as a

function of the sum of sending unit activations, 

! 

i , times their

corresponding weights, 

! 

w .

   

! 

a j = f aiwij

i

"    (2)

Raw input to a unit is squashed with a squashing function, 

! 

f ,

from a value between 0 to 

! 

"  to a value between 0 and 1.

The F1-to-F2 and F2-to-F1adaptive filters and F1 and F2

unit activations are then updated as in Gjerdingen’s model [6].

With feedback from F2, a new pattern of activation in F1 is

determined. This pattern is used to update the weights from F1

to the synthesizer based on synthesizer parameter values from

the beginning of the time step. The parameter values are then

each slightly shifted in random directions and a new iteration

of learning begins for the next time step. The process

continues until there is no significant weight change from time

step to time step. After ‘babble training’, a pattern of

activation in F1 corresponds to both perception and

production. When ARESA hears a static vowel sound, it

simultaneously knows how to produce it.

Oscillator Bank

A major innovation to the earlier ART model is now

noted. A temporal orchestration mechanism is the timekeeper

of the system. The mechanism is based on a bank of adaptive

oscillators where each oscillator has a distinct natural period it

wants to oscillate with. This period, 

! 

"
i
, is assigned as the

index of the oscillator multiplied by the ‘spread rate’ or

difference between oscillator periods, 

! 

" :

! 

"
i
= i# (3)

The oscillator bank is conceptualized to represent a

population of circuits where the preferred natural period of the

bank is distributed around a ‘tactus’ periodicity, or a

periodicity of about twice per second. Oscillators with natural

periods closer to a specified tactus period will have a stronger

role in perceiving a pattern while more irrelevant oscillators,

with natural periods of say, close to nothing or of over a full

second will have almost no influence. The population strength,

! 

" , of each oscillator in the distribution is given with:

! 

"
i
= e

#($i#% )2

$ 2& (4)

where 

! 

"  is the period of the mean tactus and 

! 

"  is a constant

determining the distribution’s shape.

An oscillator is described as a pendulum. As an oscillator

travels around a phase circle, its phase increases from 0 to 1

(in radians). When it reaches a phase of 1, it is considered to

be back at a phase of 0 again. At each time step, the mean

input to F1 is calculated and this provides a single input value

to the oscillator bank. For each oscillator, this input directly

increases or decreases the oscillator’s current amplitude, 

! 

"
t
,

from the amplitude the oscillator had at the previous time step,

! 

"
t#1, based on its previous phase, 

! 

"
t#1:

! 

"
t

= (I +"
t#1 sin(2$% t#1))

2
+ ("

t#1 cos(2$% t#1))
2   (5)

Because input increases only the ‘momentum’ of an oscillator,

a second equation is necessary to shift the phase to

compensate for the shift in amplitude such that the motion of

the oscillator remains consistent from time step to time step:

! 

"
t

= ar cos(
#
t
cos(2$"

t%1)

#
t%1

)(
1

2$
) (6)

It is also necessary to keep the amplitude of the oscillators

from growing without bound. The updated amplitude of an

oscillator, 

! 

"
u
, is kept in the range of 0.0 to 1.0 with the

following squashing function, where 

! 

"  is a constant:

! 

"
u

=
"#"

"#"
+1

(7)

After input to an oscillator is calculated and squashed, the

amplitude decays:

! 

"
u

=" #
"D$

%
(8)

where 

! 

D  is a global decay rate. Dividing by the period of the

oscillator standardizes the decay for all oscillators, as

oscillators with longer periods are updated more often in

relation to their cycles.

Finally, at each time step the phase of an oscillator must

advance a portion of its period, where 

! 

T  is the duration in

milliseconds of the time step (simulations reported in this

paper were run in time steps corresponding to 5 ms)

! 

"
t+1 ="

t
+
T

#
(9)

Output from the oscillator bank at each time step is a

single value that represents the overall state of the bank at that

time step. The optimal time for an oscillator to receive its

input such that amplitude is maximally increased is at a phase

of what I call its ‘firing phase’ (firing phase = 0.25 in radians,

based on Eqs. 5 & 6). Each oscillator that passes its firing

phase during a time step contributes to the output of the
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oscillator bank based on its amplitude and its relevance in the

distribution. That is, the output value of the oscillator bank,

! 

O
B

, at a time step is found as the sum of each oscillator’s

firing, 

! 

F  (if an oscillator of index 

! 

i  passes its firing phase

during a time step, 

! 

F
i
=1.0, else 

! 

F
i
=0.0), multiplied by that

oscillator’s amplitude and population strength:

 

! 

O
B

= F
i
"
i
#
i

i

$ (10)

! 

O
B

 is squashed with (7) and then serves in a threshold

function for the output cell of each F1 unit. More specifically,

input to each unit of F2 by eq. (2) becomes something like:

! 

I j = f OBaiwij

i

" (11)

This enacts what may be viewed as a periodic thresholding of

F1 when there is periodicity in the input so that sound

segments are grouped or fused together. Information is

released from F1 to F2 as it occurs within ‘perceptual pulses’

of the oscillator bank. Events leading up to the pulse are

commingled into a single firing pattern. I return to this in the

discussion section.

The important point to note here about the oscillator bank

is that it falls into specific behavior patterns given specific

temporal structures of input patterns. When periodicity exists

in an input, that periodicity is captured by the output. If there

is no apparent periodicity in the input, but the input still

exhibits rhythmic regularity, that regularity is also

distinguished by the system.

III.  INITIAL RESULTS

A bank of twelve test patterns were pre-synthesized by

the simulated robotic vocal tract and used to train the system.

The training patterns were made of three basic vowels (/a/, /u/,

and /i/) presented in two different rhythmic contexts. Table I

presents the twelve possible permutations of rhythmic-

orderings of the vowels. There is an isolated vowel and a

vowel pairing in each pattern. Dots between vowels represent

the analog of musical rests where the vowel sounds and rests

are all of equal duration. Including the rests as events, there

are six events of equal duration in each pattern. The difference

between the two rhythms is that one rhythm has the long rest

after the isolated event while the other rhythm has the long

rest after the event pair. There are two possible sequential

orderings the three vowels could take (i.e. either the /u/ or the

/i/ can follow the  /a/) and each of the vowels could be the

isolated event. The patterns were each repeated three times to

form the stimuli for the test.

For the sake of this simulation, twelve supervised training

nodes were added to the system in the form of category nodes

on F2. Each of these nodes corresponded to one of training

pattern of Table I. When a specific training pattern was

presented as input, that pattern’s training node was also turned

on. Weights from F2 to the training node were adapted

according to the generalized delta rule [6]. Training alternated

between this supervised learning and babble learning. After

training, turning on the training node and activating F2 with

that training node’s weights and waiting for resonance would

generate sound from the synthesizer. Listening to these sounds

provides a rough way to evaluate how the network has

learned. The network is seen to easily reproduce the training

patterns (as judged by this author).

A series of perceptual studies are underway. For example,

in one experimental design, subjects are presented with pairs

of stimuli (e.g. from Table I) and on a scale from 1 to 10 they

are asked to say how similar the patterns are. Collective

results provide a basis for evaluating the model. A similarity

measure from ARESA is taken as a function of the amount of

time it takes for the system to switch between resonances

when exposed to one pattern directly after the other. The

measure is highly dependent on the parameters and

functionality of the orienting system. Preliminary results

indicate that similarity ratings by an optimized model may

resemble ratings made by people. However, a detailed

discussion relies on a detailed discussion of the orienting

system and is beyond the scope of this paper.

IV.  DISCUSSION

This paper is meant as an introductory overview to a large

project. My intention is to provide a foundation for dialog on a

number of issues relevant to the continued development of

ARESA and on general topics in speech acquisition research.

Future work involves continuing to refine and focus on

various details and aspects of ARESA. These include 1)

integration of events of temporal patterns with each other in

working memory 2) issues involving attention and the

orienting system 3) methodologies for evaluating the model in

terms of human performance 4) the use of evolutionary

algorithms to refine the architecture and learning parameters. I

now briefly address these topics and attempt to tie everything

together into a unified whole.

ART networks are inherently suited for the processing of

temporal patterns. Yet, they have only ever really been

implemented to process static and sequential patterns. More

explicitly: I do not know of any ART network that can

distinguish say, a sequence of musical notes presented in one

rhythmic arrangement from those same notes presented in the

same sequential order with a different rhythmic arrangement

without a hack to encode temporal information in the

symbolic representations of the notes (e.g. [4-5]). By

incorporating a bank of adaptive oscillators that collectively

generates expectations for the onsets of the high energy

TABLE I

TWELVE REPEATING VOWEL-RHYTHM INPUT PATTERNS

a . . u i . a . . i u . a . u i . . a . u i . .

u . . i a . u . . a i . a . u i . . a . u i . .

i . . au . i . . ua . a . u i . . a . u i . .
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portions of the speech signal (vowels), temporal relationships

are mapped to an internal clock. Activations arriving from the

input bank of bandpass filters collect into F1 and when the

beat-tracker passes its firing phase, it raises activations above

threshold. This is meant to mimic a kind of neural phase-

locking. The generalization is that trajectories of speech

sounds corresponding to articulatory gestures are gathered and

released into F2 in cohesive batches. Input (and output) of

ARESA may thus be interpreted as speech gestures or

trajectories and are centered around transitions into (and

anticipations of) vowels. Though a full discussion is beyond

this introductory treatment, the phase-locking I introduce next

is seen as orchestrated by neural circuitry associated with the

cerebellum and perhaps a feedback loop of the cerebellum

with the basal ganglia. See [7] for a relevant discussion on the

role of the cerebellum in speech and cognition.

A temporal form of Hebbian learning serves as the

foundation for conceptualizing neural phase-locking. Equation

1 introduced a form of Hebbian learning typically used in

ART networks where the strength of a connection is updated

based on activations of sending and receiving units. In what I

term ‘DHL’ (dynamic Hebbian learning), the timing of a

synaptic connection becomes the true mechanism of learning.

Imagine an array of units connecting through synapses to a

target unit. When connecting synapses fire and then the target

cell fires, the connecting synapses that fired a little too early or

a little too late should correct themselves. That is, synapses are

modeled to adapt to fire a little more quickly or a little more

slowly the next time they fire so as to optimize the recovery of

neurotransmitters in reuptake. Through DHL, synaptic

connections that are associated with each other become

synchronized to fire at the same times. This increases the odds

that the target cells associated with the synapses will receive

enough activation to rise above their thresholds to fire.

Resonances between fields in an ART network may thus be

viewed in terms of phase-locking and the oscillator bank then

can be interpreted as a preliminary mechanism to orchestrate

these neural synchronicities. Work related to these ideas

includes [8-9].

The orienting system is the least well developed aspect of

ARESA. In ART, the orienting system maps to the role of the

hippocampus and basal forebrain – it oversees resonance

between the fields and thus it directs attention and learning. I

anticipate the vast bulk of future work on ARESA will be

geared at integrating the oscillator bank with the orienting

system so that only strategic portions of F2 are reset upon F1-

F2 mismatch.

The last development direction I pursue has to do with the

use of genetic algorithms. Like the CTRNNs investigated by

Randall Beer and others [10-11], the architecture and

parameters and initial connections of ARESA may be

optimized by generating, evaluating, and evolving network

configurations. I am specifically interested in how weights

between the filter bank and F1, and between F1 and the speech

synthesizer may be hard-wired. This hard-wiring would vastly

reduce the time needed for the system to learn and

conceptually relates to the nativist view of language.

Situating an adaptive resonance network in a speech

perception-production loop helps to illustrate some conceptual

issues in current debate. For example, a motor theory of

speech perception proposed by Alvin Liberman and

colleagues [12-14] posits that intended articulatory gestures by

a speaker are normalized by a listener based on neural

circuitry that is intimately linked with speech production

circuitry. In short, the theory proposes that we recognize the

words of an utterance regardless of who utters them (different

people exhibit different acoustic production characteristics),

because we perceive the acoustic stream in terms of how we

would articulate it ourselves. Patterns of activation in F1 and

resonance in the model simultaneously correspond to input

and output and speech is perceived in terms of production

knowledge.

ARESA also relates to the work of Frank Guenther and

colleagues [15] where they have developed a model termed

DIVA (Directions Into Velocities of Articulators), that

develops knowledge about vocal production by listening to

itself babble. Unlike the simplistic steady-state vowels used in

this study, DIVA is geared at articulator trajectories. Guenther

makes a case for acoustic rather than articulatory goals in

vocal production. With ARESA however, there does not seem

to be a clear distinction between articulatory and acoustic

goals. Motor equivalence relations naturally fall out of the

system - though direct motor feedback to F1 from the robotic

vocal tract has yet to be implemented and tested.

It is clear that there are many details to be addressed.

However, as a painter who is trained to cover the entire canvas

with paint before focusing on the particulars, I have described

the big picture of ARESA. Details may now be fleshed in with

reference to a grand scheme and as details take on their

precise forms, the big picture will continue to emerge and to

influence the roles of other details still. The focus and masse

process now begins.
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